
 Arduino Simulator macOS

ARDUINO IO SIMULATOR MACOS

USER MANUAL

XEVRO

Version 1.5.3

Xevro© 2019

This manual describes all the features and capabilities of the Arduino
Simulator.

 Arduino Simulator macOS

INTRODUCTION

The Arduino Simulator gives you the tools and components you need to simulate your
Arduino IO. It’s made for quick tests and small projects and there is still further devel-
oped in order to obtain the widest possible IO functions.

This Arduino IO Simulator is designed to test an Arduino program quickly with the
Arduino board without really having connections to external IO (buttons, potentiome-
ters, LEDs, LCD displays, ...) and add a nice custom drawing around it to get a better
simulation experience.

To use the simulator you need 3 programs:

• - Java JDK
• - The Arduino Simulator
• - The Arduino IDE software

In order to use the Simulator we need to download the Java JDK on our MacBook or
iMac, you can find the download link on the website of Xevro. Or go to this link and
download the macOS version:

www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

ARDUINO IDE

For we start using the Arduino Simulator we need the Arduino software, it is also freely
available on the Arduino website: http://arduino.cc/en/Main/Software

 Arduino Simulator macOS

INSTALLATION GUIDE

1. Before you can use the Arduino Simulator you will need to install the Java JDK. On
Windows computers, it’s enough to install the basic Java JRE.
The Java JDK isn’t automatically installed and the simulator will not run without the
Java JDK.
www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2. Xevro is an unauthorized company so your Mac will give a message to give us
permissions. In order to do that you will go to ‘System Preferences’ and go to the ’Se-
curity & Privacy’. Click on the tab ‘General’ and press on the ‘Open Anyway’ button,
and the Arduino Simulator will start.

3. The first time when you start the Arduino Simulator you will get a window pop-up
that asks to give your password. This is to change the permissions of the Java/exten-
sions folder where the Serial driver needs to come. It will close automatically after type
in your password. This will just happen ones.

4. Drag the Arduino Simulator 1.5 MacOS in the Programs folder.

5. Copy the license key in the Arduino Simulator of the website page.

If you bump into a mistake or problem, please send me an e-mail to info@xevro.be

More informa tion on the Xevro support page: https://xevro.be/support/simulator-
manual-support.html#SimulatorIO

 Arduino Simulator macOS

LICENSE ACTIVATION

The Arduino Simulator free available but we secured it with a license key. The first
time you opens the program there will be an activation screen pops up where you can
put in the license and activate it.

Click on the ‘Change Product Key’ to insert the license key you copied on the website,
after entering this you need to click on ‘activate’.

License key input field

 Arduino Simulator macOS

HOW TO USE IT

The Arduino Simulator is very easy to understand. The simulator needs 5 simple things
in order to work correctly.

1. Connect the Arduino board
2. Upload your custom Arduino code with the corresponding library file
3. Change the original Arduino code
4. Select the used in-outputs in the Arduino Simulator
5. Connect the Arduino Simulator to the Arduino board with the right serial port

1. Connect the Arduino Board

The Arduino Simulator works with a lot of Arduino boards:

• Arduino UNO
• Arduino Mega
• Arduino Nano
• Arduino Micro
• Arduino Leonardo

• Arduino ...

Only the digital and analog pins that are available on the Simulator can be used!
Disconnect the Arduino Simulator before uploading the Arduino code.

2. Upload your custom Arduino code with the corresponding library file

Open the simulator and go to 'Help -> Arduino UNO programming code -> Arduino
UNO programming code (Ino)’.
This will open an Arduino (ino) file with the corresponding library and important code
in it.

3. Change the original Arduino code

In order to let the Simulator understand the code, we have devised our own instruc-
tions. To maintain usability, we have decided to change the current instructions a little
bit and replace only the first letter with a capital letter. We have modified the instruc-
tions with a point so that the point may be omitted.

digitalWrite(13, HIGH); -> DigitalWrite(13, HIGH);

lcd.print("x"); -> lcdprint("x");

4. Select the used in-outputs in the Arduino Simulator

Each input and output on the Simulator has a selection box where the used digital or
analog pin can be connected.

5. Connect the Arduino Simulator to the Arduino board with the right serial port

The Arduino Simulator knows which port is the Arduino board.
Make sure the Arduino is disconnected while uploading the Arduino code.

 Arduino Simulator macOS

CODE CHANGES

The Arduino IDE works with instructions that the IO read and write, we must convert

this to serial communication, now we need to write new instructions for this.

We don’t want to change the real instructions so we decided to make the first character
as a capital, the instructions with a point in it are changed with no point.

More information on the Xevro support page: https://xevro.be/support/simulator-man-
ual-support.html#SimulatorIO

Example 1:

digitalWrite(12, HIGH);

Become DigitalWrite(12, HIGH);

Example 2: lcd.print(“Hello world”);

Become lcdprint(“Hello world”);

The first letter is now a case of removing the tip:

Instructions Arduino Instructions Arduino IO Simulator

 digitalWrite(x,y); = DigitalWrite(x,y); attention: capital letter

 digitalRead(x); = DigitalRead(x); attention: capital letter

 analogWrite(x,y); = AnalogWrite(x,y); attention: capital letter

 analogRead(x); = AnalogRead(x); attention: capital letter

myservo.write(x); = myservowrite(x); attention: the ‘.’ remove

Serial.print(x); = Serialprint(x); attention: the ‘.’ remove

tone(x,y ,z); = Tone(x,y ,z); attention: capital letter

noTone (x); = NoTone(x); attention: capital letter

lcd.setCursor(x,y); = lcdsetCursor(x,y); attention: the ‘.’ remove

lcd.print(long x); = lcdprint(x); attention: the ‘.’ remove

lcd.print(“x”); = lcdprint(“x”); attention: the ‘.’ remove

lcd.autoscroll(); = lcdautoscroll(); attention: the ‘.’ remove

lcd.noAutoscroll(); = lcdnoAutoscroll(); attention: the ‘.’ remove

lcd.clear(); = lcdclear(); attention: the ‘.’ remove

lcd.display(); = lcddisplay(); attention: the ‘.’ remove

lcd.noDisplay(); = lcdnoDisplay(); attention: the ‘.’ remove

lcd.blink(); = lcdblink(); attention: the ‘.’ remove

 Arduino Simulator macOS

lcd.noBlink(); = lcdnoBlink(); attention: the ‘.’ remove

lcd.write(x); = lcdwrite(x); attention: the ‘.’ remove

lcd.rightToLeft(); = lcdrightToLeft(); attention: the ‘.’ remove

lcd.leftToRight(); = lcdleftToRight(); attention: the ‘.’ remove

lcd.home(); = lcdhome(); attention: the ‘.’ remove

lcd.cursor(); = lcdcursor(); attention: the ‘.’ remove

lcd.scrollDisplayLeft(); = lcdscrollDisplayLeft(); attention: the ‘.’ remove

lcd.scrollDisplayRight(); = lcdscrollDisplayRight(); attention: the ‘.’ Remove

What to do:

1. Open a new Arduino sketch

2. Add the serial connections

3. Add the ‘ArduinoSimulator.h’ library

4. Change your code with the right instructions (see above)

5. Upload your code and connect the simulator to the Arduino!

attention:
Remember to adjust the 'Void Setup to initialize the real IO!!

Example: pinMode (0, OUTPUT);

 pinMode (1, INPUT);

In each sketch are the instructions changed, so you only need to connect the inputs
and outputs through the screen and the sketch should work.

How to use an example:

1. Open an example sketch and upload it into the Arduino board.

2. Add the used components (I/O) in the worksheet. (there are some examples that

are already saved in the restore settings)

3. Connect the Arduino IO Simulator with the board

4. Simulate your Arduino in and outputs on the simula-

tor.

 Arduino Simulator macOS

PREPARING THE ARDUINO UNO PROGRAM

Open a new sketch (xx.ino)

The Simulator UNO-program (.ino) and the Simulator library “SimulatorProgram.h”
can found under Help:

Start the “Arduino UNO programming code” application
Now you can set your own code into the Arduino if it’s upload in the Arduino you can

test it with the Simulator.

Attention: The library “SimulatorProgram.h” stand by the Simulator.

Uploading of a new program to the Arduino board

• Start the Arduino application

• Open the sketch

• Arduino UNO connecting with the pc:

• Select board “Arduino UNO”

• Select the serial port

• Upload the program into the Arduino UNO

Attention: The BaudRate on the simulator is 9600.

 Arduino Simulator macOS

CONFIGURE THE SERIAL PORT

Set the BaudRate

The BaudRate is set by default at 9600 or chance the BaudRate in the Arduino code

and also in the Simulator.

Set the Com port

First, you need to select the serial port, the USB port that is used by the Arduino.

The Simulator auto detects the Arduino and turns ‘red’.

 Before the selection After the selection

Attention:

- At start-up, we also see the state of the simulator at the bottom of the serial port:

- Once you have selected the correct serial port changes to this text:

You will get an error message when you want to connect with a pin that is already
used.

 Arduino Simulator macOS

USE THE ANALOG & DIGITAL IO

Digital Inputs

The Arduino UNO has 14 digital IO pins that we can

configure into inputs or outputs (IO). These pins get

symbolic images as D0 to D13 and the text change red if

it’s select.

BUTTONS

There are 8 buttons available. The combobox is used to connect the button to one of
the 14 IO pins.

The light blue pin can be used to hold down the button
while doing other things, the border changes to red when
it’s pressed.

The buttons can be controlled with the DigitalRead() func-
tion.

LEDS

There are 14 LEDs available, for every pin of the Arduino 1 LED. Use the combobox to
connect it with the Arduino. By clicking on the LED you can change
the color.

The LEDs can be controlled with the DigitalWrite() function.

 Arduino Simulator macOS

BUZZER

The buzzer is used to make a noise with a custom frequency. The combobox is used
to connect the buzzer with the Arduino.

The buzzer can be controlled with the DigitalWrite(); function. By sending out a Digi-
talWrite(pin, HIGH); signal in the Arduino code, the buzzer will make a noise with the
adjustable frequency (use the slider to change the frequency).

7 SEGMENT DISPLAY

The 7 segment display has 7 digital pins that can connect to D0-6 on the Arduino. The
display can be connected in common anode or common cathode.

To light up the display use DigitalWrite(D0-6);

See the example: Parking.

SLIDERS

There are 3 sliders to connect with one of the 6 analog pins (A0-A5). The sliders can
be read by the Arduino with the AnalogRead() function. On the Arduino you have a
white box where the slider value is shown.

 Arduino Simulator macOS

NOISE DETECTION

The noise detection is used to send an analog (0-1023) signal to the Arduino depends
on the noise level. The combobox is used to connect the noise detector to one of the
6 analog pins (A0-A5).

When you click on the ‘Start Noise Detection’ the detection starts listening to the mi-
crophone noise level. When the noise level exceeded the slider value then it will send
the signal (0-1023) to the Arduino. The limit value in the Arduino code needs to be
lower than the noise detection slider because the signal will be sent when the noise is
detected.

The noise detection can be controlled with the AnalogRead() function.

BARGRAPH

The bargraph can be connected to one of the 6 digital PWM pins of the Arduino. The
bargraph shows the % of your value (0-1023), this can be used to simulate a PWM
signal as a % bar.

Use AnologWrite(pin, value); to control the bargraph (See example: sound switch).

 Arduino Simulator macOS

SOUND GENERATOR

The sound generator can be connected to one of the 6 digital PWM pins of the Arduino.

By changing the time (ms) you change the duration that the sound goes off (1ms – 10
000ms). The frequency can go from 10hz to 10Khz.

Use AnalogWrite(pin, value); to control the sound generator.

SERVO

The servo can be connected to one digital pin (D12) of the Arduino. The amount of
degrees (°) are visible in the servo. With the MyservoWrite() you can control servo.

LCD DISPLAY

The LCD display can be connected to the Arduino by connecting D2-5, D11 and D12.
All the instruction that controls the LCD are changed by removing the ‘.’ point.

example: lcd.print() = lcdprint().

TONE MELODY

The tone melody can be connected to digital pin D8 of the Arduino. The frequency and
time of the sound (milliseconds) are present in the light green boxes.
Use Tone(8, f, d); and NoTone(8); (See example: Tone Melody)

NoTone() stops playing sound.

f = frequency

d = duration

 Arduino Simulator macOS

SQUARE WAVE GENERATOR

The square wave sends pulls signals to the Arduino, when the signal is high you see
the grey square lights up ‘red’. The combobox is used to connect the squarewave to
one of the 6 analog pins (A0-A5 = D14-19).

When you click on the ‘SquareWave’ button there opens a second window with a slider
to change the frequency.

The square wave can be controlled with the DigitalRead() function.

 Arduino Simulator macOS

A FEW THINGS WHILE PREPARING THE ARDUINO

PROGRAM

Always upload the sketch to the Arduino UNO.
if the simulator is connected with the Arduino you can’t upload the Arduino program.
We made a tool 'Disconnect' which closes the connection with the serial port of the
simulator so that you can upload the sketch to the Arduino.

The great advantage of this is that we don’t need to shut down the Simulator whenever
we want to upload the sketch simulator.

After downloading the simulator, we connect again with the serial port.

 Disconnect serial port Choose serial port BaudRate

 Arduino Simulator macOS

SAVE AND RESTORE OF SETTINGS

With ‘Save’ you can save your selected I/O and dictated texts.

the ‘Restore’ button restores the settings to make it easy to use.

We can save the filename of the extension with *.sav or *.txt.

You find the ‘Save and Restore’ function under ‘File’.

Save Restore

 Arduino Simulator macOS

SCREEN RESOLUTION

We have 6 options:

- 13 inch MacBook pro size

- Resolution: 1024 x 768

- Resolution: 1336 x 768

- Resolution: 1920 x 1080

- Full Screen (iMac)

- Variable resolution (min: 500, max: 2000)

 Arduino Simulator macOS

LANGUAGES

We have 20 languages available, 5 languages are in the list but will be added to the
program. The languages that will be available soon are: Ukrainian, Polish, Hindi, Italian
and Russian

- Arabic

- Chinese (traditional)

- German

- English

- French

- Hungarian

- Hindi

- Italian

- Japanese

- Dutch

- Ukrainian

- Polish

- Portuguese

- Russian

- Slovak

- Spanish

- Thai

- Czech

- Turkish

- Vietnamese

